Lehrstuhl II für Mathematik
 http://www.math2.rwth-aachen.de

Dipl.-Math. Michael Hoschek
WiSe 2013/2014

5 Vectors and Spans

Definition 1 (Row vector). For $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}$ an n-tuple or row vector is defined by $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Two row vectors $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$ are equal if and only if $x_{i}=y_{i}$ for $i=1,2, \ldots, n$.

Definition 2 ((Column) vector). For $n \in \mathbb{N}$ and $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R} a$ (column) vector is defined by

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}
$$

We denote $\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ by \mathbf{x} and $\underbrace{(0,0, \ldots, 0)^{T}}_{n \text { times }}$ by $\mathbf{0}$. The last vector is also called the origin.

Definition 3 (Euclidean space). The n-dimensional Euclidean space \mathbb{R}^{n} is

$$
\mathbb{R}^{n}=\underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text { times }}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}: x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}\right\} .
$$

Definition 4 (Vector addition \& scalar multiplication). Let $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}, \mathbf{y}=$ $\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T} \in \mathbb{R}^{n}$. Then

- $\mathbf{x}+\mathbf{y}=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)^{T}$ (vector addition),
- for $s \in \mathbb{R}: s \cdot \mathbf{x}=\left(s x_{1}, s x_{2}, \ldots, s x_{n}\right)^{T}$ (scalar multiplication). The dot \cdot is usually omitted.

Theorem 5 (vector-space axioms). The n-dimensional Euclidean space \mathbb{R}^{n} together with vector addition and scalar multiplication fulfills the so-called vector-space axioms. Let $x, y, z \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$.

V1: $x+y=y+x$.
V2: $(x+y)+z=x+(y+z)$.

V3: $\mathbf{0}=x-x=0 \cdot x$.
V4: $s(x+y)=s x+s y$.
$V 5:(s+t) \cdot x=s x+t x$.
V6: $x=1 x=0+x$.
Definition 6 (scalar product). The scalar product of two column vectors $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and $\mathbf{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ is defined as

$$
\mathbf{x} \cdot \mathbf{y}=\sum_{k=1}^{n} x_{k} y_{k}=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

The dot \cdot is usually omitted.
Definition 7 (Length of a vector). The length of a vector $\mathbf{x} \in \mathbb{R}^{n}$ is

$$
|\mathbf{x}|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Definition 8 (Distance of points). The distance between $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ is

$$
\operatorname{dist}(\mathbf{x}, \mathbf{y})=|\mathbf{x}-\mathbf{y}|
$$

Theorem 9 (Properties of scalar product \& length). If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $s \in \mathbb{R}$, then
(i) $(s \mathbf{x}) \mathbf{y}=s(\mathbf{x y})$,
(ii) $\mathbf{x y}=\mathbf{y x}$,
(iii) $(\mathbf{x}+\mathbf{y}) \mathbf{z}=\mathbf{x z}+\mathbf{y z}$,
(iv) $|\mathbf{x}| \geq 0$ and $|\mathbf{x}|=0$ if and only if $\mathbf{x}=\mathbf{0}$,
(v) $|s \mathbf{x}|=|s||\mathbf{x}|$,
(vi) $|\mathbf{x y}| \leq|\mathbf{x}||\mathbf{y}|$,
(vii) $||\mathbf{x}|-|\mathbf{y}|| \leq|\mathbf{x}+\mathbf{y}| \leq|\mathbf{x}|+|\mathbf{y}|$.

Definition 10 (Orthogonality). Two vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ are orthogonal or perpendicular, denoted by $\mathbf{x} \perp \mathbf{y}$, if $\mathbf{x y}=0$.

Definition 11 (Linear combination). Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}} \in \mathbb{R}^{n}$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$. Then

$$
\mathbf{w}=\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}+\cdots+\lambda_{m} \mathbf{v}_{\mathbf{m}}
$$

is called a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$.

Definition 12 (Span). Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}} \in \mathbb{R}^{n}$. The span of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$, denoted by $\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)$, is the set of all linear combinations of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$, i.e.
$\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)=\left\{\mathbf{w}=\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}+\cdots+\lambda_{m} \mathbf{v}_{\mathbf{m}} \in \mathbb{R}^{n}: \lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}\right\}$.
Theorem 13. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}} \in \mathbb{R}^{n}$. Then the set $U=\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)$ is a subspace of \mathbb{R}^{n}, i.e. it fulfills

S1: $0 \in U$.
S2: If $x, y \in U$, then $x+y \in U$.
S3: If $s \in \mathbb{R}$ and $x \in U$, then $s x \in U$.
Definition 14 (Linear (in-)dependence). A set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\} \subset \mathbb{R}^{n}$ of vectors is called linearly independent if

$$
\lambda_{1} \mathbf{v}_{\mathbf{1}}+\lambda_{2} \mathbf{v}_{\mathbf{2}}+\cdots+\lambda_{m} \mathbf{v}_{\mathbf{m}}=\mathbf{0} \Longrightarrow \lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}=0
$$

I.e. the only possibility to represent $\mathbf{0} \in \mathbb{R}^{n}$ as a linear combination of $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}$ is choosing all coefficients $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ equal to 0 .

Definition 15 (Basis, Dimension). A linearly independent set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\} \subset \mathbb{R}^{n}$ with $\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)=U$ resp. \mathbb{R}^{n} is called basis of U resp. \mathbb{R}^{n}. The number m is called the dimension of U. (If $\operatorname{span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right)=\mathbb{R}^{n}$, then $m=n$.)

Theorem 16. Let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\} \subset \mathbb{R}^{n}$ and $U \subseteq \mathbb{R}^{n}$ a subspace. The following assertions are equivalent:

- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ is a minimal spanning set of U.
- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ is a maximal linearly independent set of vectors of U.
- Every $\mathbf{u} \in U$ has a unique expression as linear combination of $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$.
- $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}, \ldots, \mathbf{v}_{\mathbf{m}}\right\}$ is a basis of U.

Definition 17. Let a $(m \times n)$ matrix A be given. Then the set of solutions of the homogenous system $S(A, 0)$ is called the kernel of A.

Theorem 18 (Structure of the solution set of a homogenous system). The set of solutions of a homogenous system of linear equations is a span of linearly independent vectors.

Theorem 19 (Structure of the solution set of an inhomogenous system). Let $\mathbf{x}_{s p}$ be a (special) solution of an inhomogenous system of linear equations and let $S_{\text {hom }}$ denote the set of all solutions of the corresponding homogenous system. Then the set of solutions of the inhomogenous system is given by

$$
S=\left\{\mathbf{x}=\mathbf{x}_{s p}+\mathbf{x}_{\text {hom }}: \mathbf{x}_{\text {hom }} \in S_{\text {hom }}\right\},
$$

i.e. one gets all solutions of the inhomogenous system by adding all solutions of the homogenous system to one solution of the inhomogenous system.

