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5 Vectors and Spans

Definition 1 (Row vector). For n ∈ N and x1, x2, . . . , xn ∈ R an n-tuple or row vector
is defined by (x1, x2, . . . , xn). Two row vectors (x1, x2, . . . , xn) and (y1, y2, . . . , yn) are equal
if and only if xi = yi for i = 1, 2, . . . , n.

Definition 2 ((Column) vector). For n ∈N and x1, x2, . . . , xn ∈ R a (column) vector is
defined by 

x1

x2
...

xn

 = (x1, x2, . . . , xn)
T.

We denote (x1, x2, . . . , xn)T by x and (0, 0, . . . , 0)T︸ ︷︷ ︸
n times

by 0. The last vector is also called the

origin.

Definition 3 (Euclidean space). The n-dimensional Euclidean space Rn is

Rn = R×R× · · · ×R︸ ︷︷ ︸
n times

=
{
(x1, x2, . . . , xn)

T : x1, x2, . . . , xn ∈ R
}

.

Definition 4 (Vector addition & scalar multiplication). Let x = (x1, x2, . . . , xn)T, y =

(y1, y2, . . . , yn)T ∈ Rn. Then

• x + y = (x1 + y1, x2 + y2, . . . , xn + yn)T (vector addition),

• for s ∈ R: s · x = (sx1, sx2, . . . , sxn)T (scalar multiplication). The dot · is usually
omitted.

Theorem 5 (vector-space axioms). The n-dimensional Euclidean space Rn together with
vector addition and scalar multiplication fulfills the so-called vector-space axioms. Let
x, y, z ∈ Rn and s, t ∈ R.

V1: x + y = y + x.

V2: (x + y) + z = x + (y + z).



V3: 0 = x− x = 0 · x.

V4: s(x + y) = sx + sy.

V5: (s + t) · x = sx + tx.

V6: x = 1x = 0 + x.

Definition 6 (scalar product). The scalar product of two column vectors x = (x1, x2, . . . , xn)T

and y = (y1, y2, . . . , yn)T is defined as

x · y =
n

∑
k=1

xkyk = x1y1 + x2y2 + · · ·+ xnyn.

The dot · is usually omitted.

Definition 7 (Length of a vector). The length of a vector x ∈ Rn is

|x| =
√

x2
1 + x2

2 + · · ·+ x2
n.

Definition 8 (Distance of points). The distance between x, y ∈ Rn is

dist(x, y) = |x− y|.

Theorem 9 (Properties of scalar product & length). If x, y, z ∈ Rn and s ∈ R, then

(i) (sx)y = s(xy),

(ii) xy = yx,

(iii) (x + y)z = xz + yz,

(iv) |x| ≥ 0 and |x| = 0 if and only if x = 0,

(v) |sx| = |s||x|,

(vi) |xy| ≤ |x||y|,

(vii) ||x| − |y|| ≤ |x + y| ≤ |x|+ |y|.

Definition 10 (Orthogonality). Two vectors x, y ∈ Rn are orthogonal or perpendicular,
denoted by x ⊥ y, if xy = 0.

Definition 11 (Linear combination). Let v1, v2, . . . , vm ∈ Rn and λ1, λ2, . . . , λm ∈ R.
Then

w = λ1v1 + λ2v2 + · · ·+ λmvm

is called a linear combination of v1, v2, . . . , vm.
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Definition 12 (Span). Let v1, v2, . . . , vm ∈ Rn. The span of v1, v2, . . . , vm, denoted by
span(v1, v2, . . . , vm), is the set of all linear combinations of v1, v2, . . . , vm, i.e.

span(v1, v2, . . . , vm) = {w = λ1v1 + λ2v2 + · · ·+ λmvm ∈ Rn : λ1, λ2, . . . , λm ∈ R} .

Theorem 13. Let v1, v2, . . . , vm ∈ Rn. Then the set U = span(v1, v2, . . . , vm) is a sub-
space of Rn, i.e. it fulfills

S1: 0 ∈ U.

S2: If x, y ∈ U, then x + y ∈ U.

S3: If s ∈ R and x ∈ U, then sx ∈ U.

Definition 14 (Linear (in-)dependence). A set {v1, v2, . . . , vm} ⊂ Rn of vectors is called
linearly independent if

λ1v1 + λ2v2 + · · ·+ λmvm = 0 =⇒ λ1 = λ2 = · · · = λm = 0.

I.e. the only possibility to represent 0 ∈ Rn as a linear combination of v1, v2, . . . , vm is
choosing all coefficients λ1, λ2, . . . , λm equal to 0.

Definition 15 (Basis, Dimension). A linearly independent set {v1, v2, . . . , vm} ⊂ Rn

with span(v1, v2, . . . , vm) = U resp. Rn is called basis of U resp. Rn. The number m is
called the dimension of U. (If span(v1, v2, . . . , vm) = Rn, then m = n. )

Theorem 16. Let {v1, v2, . . . , vm} ⊂ Rn and U ⊆ Rn a subspace. The following assertions
are equivalent:

• {v1, v2, . . . , vm} is a minimal spanning set of U.

• {v1, v2, . . . , vm} is a maximal linearly independent set of vectors of U.

• Every u ∈ U has a unique expression as linear combination of {v1, v2, . . . , vm}.

• {v1, v2, . . . , vm} is a basis of U.

Definition 17. Let a (m× n) matrix A be given. Then the set of solutions of the homogenous
system S(A, 0) is called the kernel of A.

Theorem 18 (Structure of the solution set of a homogenous system). The set of solu-
tions of a homogenous system of linear equations is a span of linearly independent vectors.

3



Theorem 19 (Structure of the solution set of an inhomogenous system). Let xsp be
a (special) solution of an inhomogenous system of linear equations and let Shom denote the
set of all solutions of the corresponding homogenous system. Then the set of solutions of the
inhomogenous system is given by

S =
{

x = xsp + xhom : xhom ∈ Shom
}

,

i.e. one gets all solutions of the inhomogenous system by adding all solutions of the homoge-
nous system to one solution of the inhomogenous system.
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