Lehrstuhl II für Mathematik Dipl.-Math. Michael Hoschek

5 Vectors and Spans

Definition 1 (Row vector). For $n \in \mathbb{N}$ and $x_1, x_2, ..., x_n \in \mathbb{R}$ an *n*-tuple or row vector *is defined by* $(x_1, x_2, ..., x_n)$. *Two row vectors* $(x_1, x_2, ..., x_n)$ and $(y_1, y_2, ..., y_n)$ are equal *if and only if* $x_i = y_i$ for i = 1, 2, ..., n.

Definition 2 ((Column) vector). *For* $n \in \mathbb{N}$ *and* $x_1, x_2, ..., x_n \in \mathbb{R}$ *a* (column) vector *is defined by*

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = (x_1, x_2, \dots, x_n)^T.$$

We denote $(x_1, x_2, ..., x_n)^T$ by **x** and $\underbrace{(0, 0, ..., 0)^T}_{n \text{ times}}$ by **0**. The last vector is also called the origin

origin.

Definition 3 (EUCLIDEAN space). *The n*-dimensional EUCLIDEAN space \mathbb{R}^n *is*

$$\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ times}} = \left\{ (x_1, x_2, \dots, x_n)^T \colon x_1, x_2, \dots, x_n \in \mathbb{R} \right\}.$$

Definition 4 (Vector addition & scalar multiplication). Let $\mathbf{x} = (x_1, x_2, ..., x_n)^T$, $\mathbf{y} = (y_1, y_2, ..., y_n)^T \in \mathbb{R}^n$. Then

- $\mathbf{x} + \mathbf{y} = (x_1 + y_1, x_2 + y_2, ..., x_n + y_n)^T$ (vector addition),
- for $s \in \mathbb{R}$: $s \cdot \mathbf{x} = (sx_1, sx_2, \dots, sx_n)^T$ (scalar multiplication). The dot \cdot is usually *omitted*.

Theorem 5 (vector-space axioms). *The n-dimensional* EUCLIDEAN *space* \mathbb{R}^n *together with vector addition and scalar multiplication fulfills the so-called* vector-space axioms. *Let* $x, y, z \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$.

V1:
$$x + y = y + x$$
.
V2: $(x + y) + z = x + (y + z)$.

- $V3: \mathbf{0} = x x = 0 \cdot x.$
- $V4: \ s(x+y) = sx + sy.$
- *V5*: $(s+t) \cdot x = sx + tx$.

V6: $x = 1x = \mathbf{0} + x$.

Definition 6 (scalar product). *The* scalar product *of two column vectors* $\mathbf{x} = (x_1, x_2, ..., x_n)^T$ *and* $\mathbf{y} = (y_1, y_2, ..., y_n)^T$ *is defined as*

$$\mathbf{x} \cdot \mathbf{y} = \sum_{k=1}^n x_k y_k = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

The dot \cdot *is usually omitted.*

Definition 7 (Length of a vector). *The* length *of a vector* $\mathbf{x} \in \mathbb{R}^n$ *is*

$$|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

Definition 8 (Distance of points). *The* distance *between* $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ *is*

$$\operatorname{dist}(\mathbf{x},\mathbf{y}) = |\mathbf{x} - \mathbf{y}|.$$

Theorem 9 (Properties of scalar product & length). *If* \mathbf{x} , \mathbf{y} , $\mathbf{z} \in \mathbb{R}^n$ *and* $s \in \mathbb{R}$ *, then*

(i)
$$(s\mathbf{x})\mathbf{y} = s(\mathbf{x}\mathbf{y}),$$

- (*ii*) $\mathbf{x}\mathbf{y} = \mathbf{y}\mathbf{x}$,
- (*iii*) $(\mathbf{x} + \mathbf{y})\mathbf{z} = \mathbf{x}\mathbf{z} + \mathbf{y}\mathbf{z}$,
- (iv) $|\mathbf{x}| \ge 0$ and $|\mathbf{x}| = 0$ if and only if $\mathbf{x} = \mathbf{0}$,
- (v) $|s\mathbf{x}| = |s||\mathbf{x}|$,
- (vi) $|\mathbf{x}\mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$,
- (vii) $||\mathbf{x}| |\mathbf{y}|| \le |\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|.$

Definition 10 (Orthogonality). *Two vectors* $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ *are* orthogonal *or* perpendicular, *denoted by* $\mathbf{x} \perp \mathbf{y}$, *if* $\mathbf{x}\mathbf{y} = 0$.

Definition 11 (Linear combination). Let $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m \in \mathbb{R}^n$ and $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}$. *Then*

$$\mathbf{w} = \lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_m \mathbf{v_m}$$

is called a linear combination *of* $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m$.

Definition 12 (Span). Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in \mathbb{R}^n$. The span of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$, denoted by span $(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m)$, is the set of all linear combinations of $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$, i.e.

 $\operatorname{span}(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_m) = \{\mathbf{w} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \cdots + \lambda_m \mathbf{v}_m \in \mathbb{R}^n \colon \lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{R}\}.$

Theorem 13. Let $\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m} \in \mathbb{R}^n$. Then the set $U = \text{span}(\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m})$ is a subspace of \mathbb{R}^n , i.e. it fulfills

- S1: $\mathbf{0} \in U$.
- S2: If $x, y \in U$, then $x + y \in U$.
- *S3: If* $s \in \mathbb{R}$ *and* $x \in U$ *, then* $sx \in U$ *.*

Definition 14 (Linear (in-)dependence). *A set* $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_m\} \subset \mathbb{R}^n$ *of vectors is called* linearly independent *if*

$$\lambda_1 \mathbf{v_1} + \lambda_2 \mathbf{v_2} + \dots + \lambda_m \mathbf{v_m} = \mathbf{0} \Longrightarrow \lambda_1 = \lambda_2 = \dots = \lambda_m = \mathbf{0}.$$

I.e. the only possibility to represent $\mathbf{0} \in \mathbb{R}^n$ as a linear combination of $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_m}$ is choosing all coefficients $\lambda_1, \lambda_2, \ldots, \lambda_m$ equal to 0.

Definition 15 (Basis, Dimension). A linearly independent set $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}\} \subset \mathbb{R}^n$ with $\operatorname{span}(\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}) = U$ resp. \mathbb{R}^n is called basis of U resp. \mathbb{R}^n . The number m is called the dimension of U. (If $\operatorname{span}(\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}) = \mathbb{R}^n$, then m = n.)

Theorem 16. Let $\{\mathbf{v_1}, \mathbf{v_2}, ..., \mathbf{v_m}\} \subset \mathbb{R}^n$ and $U \subseteq \mathbb{R}^n$ a subspace. The following assertions *are equivalent:*

- $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\}$ is a minimal spanning set of U.
- $\{v_1, v_2, \dots, v_m\}$ is a maximal linearly independent set of vectors of U.
- *Every* $\mathbf{u} \in U$ *has a unique expression as linear combination of* $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m}\}$.
- $\{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_m}\}$ is a basis of U.

Definition 17. *Let* a ($m \times n$) *matrix* A *be given. Then the set of solutions of the homogenous system* $S(A, \mathbf{0})$ *is called the* kernel *of* A.

Theorem 18 (Structure of the solution set of a homogenous system). *The set of solutions of a homogenous system of linear equations is a span of linearly independent vectors.*

Theorem 19 (Structure of the solution set of an inhomogenous system). Let \mathbf{x}_{sp} be a (special) solution of an inhomogenous system of linear equations and let S_{hom} denote the set of all solutions of the corresponding homogenous system. Then the set of solutions of the inhomogenous system is given by

$$S = \left\{ \mathbf{x} = \mathbf{x}_{sp} + \mathbf{x}_{hom} \colon \mathbf{x}_{hom} \in S_{hom}
ight\}$$
 ,

i.e. one gets all solutions of the inhomogenous system by adding all solutions of the homogenous system to one solution of the inhomogenous system.